Tag Archives: NASA Astrobee Free-flying Robot

Inforce 6501 Micro SOM Beats Five Other Vendor Products in a Bake-off

NASA Astrobee free-flying robot
Figure-1: NASA’s Astrobee free-flying robot headed for the ISS in 2017.

Designing a next generation free-flying autonomous robot [see Figure 1], scheduled to be deployed on the International Space Station (ISS) in 2017, is no trivial task. The NASA Astrobee will serve as a robotic assistant to offload routine, repetitive, but long-duration and CPU-intensive tasks [2] and replace a legacy and older free-flying robot.

Challenges in building the Astrobee avionics

NASA Astrobee Avionics bd
Figure-2: The Astrobee’s avionics block diagram showing the three compute modules.

The Astrobee has subsystems for structure, propulsion, power, guidance, navigation and control (GN&C), command and data handling (C&DH), thermal control, communications, docking mechanism, and a perching arm [4]. As seen in the block diagram in Figure-2 [2], the avionics provides computation and communication resources for the Astrobee. The three compute platforms are the low- [LLP], mid- [MLP], and high-level-processor [HLP], which are configured to perform specific functions.

The bake-off to pick the right compute platform Continue reading Inforce 6501 Micro SOM Beats Five Other Vendor Products in a Bake-off

NASA Astrobee Robotic Free Flyer Powered by Dual Inforce 6501 Micro System-On-Modules (SOM)

NASA Astrobee Robotic Free Flyer: International Space Station, Here We Come!

NASA Ames Intelligent Robotics Group picks the Inforce 6501™ Micro SOM for both the middle-level processor (MLP) and the high-level processor (HLP) platforms due to its strict SWaP and high-performance requirements. Continue reading NASA Astrobee Robotic Free Flyer Powered by Dual Inforce 6501 Micro System-On-Modules (SOM)